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Abstract This paper proposes an analytical elasto–plastic model to describe the behavior of arches. The
modeling is carried out using the equations of (i) horizontal equilibrium, (ii) vertical equilibrium and (iii)
equilibrium of moments. The latter equations of equilibrium are ordinary differential equations which can
easily be solved by adding boundary conditions, imposing restrictions on the horizontal and vertical move-
ment and on the rotation in the abutments of the arch. For masonry arches, including material properties
allowing the occurrence of cracks and the subsequent formation of hinges is required. The latter theory
has been implemented in a computer program (Matlab), offering numerical simulations. The software was
used to illustrate two case-studies, i.e., the assessment of an arch loaded with a vertical point load and one
with a horizontal point load.

Keywords Collapse load · Masonry arches · Numerical simulation · Ordinary differential equations

1 Introduction

Masonry arches are one of the oldest types of bridges being still in use. Some have sustained more than one
hundred years and are the subject of different and various investigations. Nevertheless researchers agree
that they are difficult to analyze and difficult to assess accurately. Woolfenden describes them as “simple
in design, complex in behavior” [1].

The earliest and best-preserved stone-arch bridge in the world is the Anji Bridge in China (see Fig. 1).
The roadbridge, still in use today, was built during the Sui Dynasty (581–618).

It is a single segmental stone arch, composed of 28 individual arches bonded transversely, 37.02 m in
span and rising 7.23 m above the chord line. Narrower in the upper part and wider in the lower, the bridge
averages 9 m in width. The main arch ring is 1.03 m thick with protective arch stones on it. Each of its
spandrels is perforated by two small arches, 3.8 m and 2.85 m, respectively, in clear span, so that flood water
can be drained and the bridge weight is lightened as well. In 1991, the Anji Bridge was named among the
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Fig. 1 The Anji Bridge.
(Source : http://www.
neville-hadley.com)

world cultural relics of civil engineering, indicating it being equally famous as the Eiffel Tower in Paris, the
Panama Canal and the Pyramids in Egypt.

The growing interest in masonry bridges still in use in China, as well as in Europe and elsewhere, has
produced substantial attention from the research community, resulting in the development of accurate and
efficient methods for their analysis. In this paper we attempt to derive closed-form analytical solutions for
the structural stability of an arch bridge with arbitrary shape and subject to both distributed and localized
loads.

The rigid-block theory is considered to be the basic model for understanding the fundamental behavior
of masonry arches [2–4]. However, this study shows that a more sophisticated approach is required to
be able to reproduce the actual collapse mechanism. Rigid-block theory uses too many simplifications
and assumptions, the latter frequently deviating excessively from actual conditions. The importance of the
rigid-block method resides in its potential to obtain a first insight into the arch behavior.

A more recent research technique uses finite-element analysis. The models range from 1-dimensional
[5,6], over 2-dimensional [7–9], up to fully 3-dimensional models [10]. These methods are especially
convenient for understanding three-dimensional effects. However, they require a precise knowledge of
parameters which are not well-known in practice. For example, they demand a large number of material
input-parameters which are difficult to determine for real arches. Moreover, finite-element (FE) programs
are often expensive and ask for a certain expertise. Hence, the use of FE software in practical situations is
rather limited.

Summarizing, the behavior of arch bridges has been approached in several ways, however until now one
“generally accepted” methodology still fails to exist.

2 Collapse modes of arch bridges

According to Boothby [2], an arch bridge can collapse as a result of three possible collapse mechanisms:
a shear mechanism (Fig. 2(a)), a hinge-mechanism (Fig. 2(b)) and a combined shear-hinge mechanism
(Fig. 2(c)).

His calculations are based on the theory of virtual work. The following conclusions are drawn from this
study of possible failure modes for masonry arch bridges:

– Sliding modes of collapse are possible within the range of geometries and material properties of masonry
arch bridges.

– Sliding modes may involve three sliding surfaces, or a combination of sliding surfaces and hinges totalling
four.
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(a) (b)

(c)

Fig. 2 Collapse modes

Fig. 3 Collapse of the
Bridgemill arch bridge.
(Source : http://archive.
niees.ac.uk/talks/dem/nenad_
bicanic.ppt)

– Sliding modes involving three sliding surfaces are more likely to occur in structures with low rise/span
ratios and thick arch rings.

– Combined sliding and hinging collapse modes are more likely to occur in structures with low rise/span
ratios.

– Hinging collapse modes predominate in structures with high rise/span ratios and narrow arch rings, or
structures that are well buttressed.

Experiments show that, due to most arches being well buttressed, the hinge-mechanism can be consid-
ered as the most likely collapse mechanism for arches. This mechanism is illustrated by the experiment of
Hendry et al. [11], who loaded a real arch bridge until collapse. Fig. 3 illustrates Hendry’s experiment. The
work presented in this study will concentrate on this mechanism only.

3 Analytical model

First, a basic model guaranteeing stability of arch bridges is developed. Next, material properties are added
to derive the formation of hinges.
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Fig. 4 Arch bridge Fig. 5 Equilibrium of an infinitesimal slice of arch

3.1 Equilibrium equations

The starting point for this analysis is the derivation of the three equilibrium equations (i.e., horizontal,
vertical and rotational equilibrium) which must be satisfied in every point of an arch bridge. The three
types of equilibrium are expressed as continuous equations, as opposed to the discrete approach taken in
a finite-element analysis. The geometry of the arch is determined by the angle θ , the radius r(θ) and the
height b(θ) as shown in Fig. 4.

To derive the differential equilibrium equations, the equilibrium of an infinitesimal piece, angular extent
dθ , of the arch is considered (see Fig. 5).

Figure 5 illustrates the equilibrium of an infinitesimal slice of an arch. The internal forces and moments,
i.e., the normal force N (>0 for tension), the shear force V (>0 for a clockwise rotation) and the bending
moment M (>0 for compression in the intrados) balance the weight of this segment of arch Wdθ and the
external forces imposed on this slice of arch. The external forces applied to the arch act on the extrados.
The latter are summarized, as shown in Fig. 5, by the forces Frdθ , acting in the radial direction, and Fθ dθ ,
acting in the tangential direction of this infinitesimal slice. Hence, the three equilibrium equations as they
apply to an infinitesimal slice of arch dθ can be expressed as:

−W(θ) cos(θ)dθ − Ndθ − ∂V
∂θ

dθ + �Frdθ = 0, (1)

W(θ) sin(θ)dθ − Vdθ + ∂N
∂θ

dθ + �Fθdθ = 0, (2)

∂M
∂θ

dθ + N
∂r
∂θ

dθ + Vrdθ + Ma(W)dθ + Ma(F)dθ = 0 (3)

with Ma(W)dθ and Ma(F)dθ denoting the moments of the weight and the external forces with respect to
the centreline of the arch given by point a in the infinitesimal slice of arch.

In ref. [12] is shown how the equilibrium equations (1)–(3) result in a set of differential equations. For
an arch bridge loaded by (i) its own weight, (ii) a distributed load p, (iii) a concentrated vertical load P
and (iv) a concentrated horizontal load H, the differential equations can be written as:

−V′ − N − γ r2η cos θ + pr − Pδ(θ − α1) cos θ + Hδ(θ − α2) sin θ = 0, (4)
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N′ − V + γ r2η sin θ + pθ + Pδ(θ − α1) sin θ + Hδ(θ − α2) cos θ = 0, (5)

M′ + Nr′ + Vr + γ r3 η3

12
sin θ + pθ

b
2

+ Pδ(θ − α1)|r(α1) sin α1 − r(θ) sin θ |
+ Hδ(θ − α2)|r(α2) cos α2 − r(θ) cos θ | = 0 (6)

with pr the radial distributed force, pθ the tangential distributed force, α1 the position of the vertical point
load, α2 the position of the horizontal point load, γ the specific weight of the arch, η = b/r and where
a prime denotes the derivative with respect to θ . The load p corresponds to the weight of the infill and
eventually to another distributed load as well.

The weight of the infill is actually a distributed load working on the arch barrel. Masonry arch bridges
use a quantity of infill above the arch in order to increase the dead-weight on the bridge and prevent tension
from occurring in the arch ring as loads move across the bridge. Derivation of this dead-load as a function
of the height of the infill h and the specific weight of the infill γ2 has been worked out by Audenaert et al.
[12].

By using the Dirac Distribution δ(θ − α) and the unit-step function ustep(θ − α) definitions, i.e.,

δ(θ − α) = 0, θ �= α

∫ +∞

−∞
δ(θ − α)dθ = 1, (7)

ustep(θ − α) = 0, θ < α

1, θ ≥ α, (8)

we can solve this set of ordinary linear differential equations analytically for N(θ), V(θ) and M(θ). This
results in:

N(θ) = k1 sin θ + k2 cos θ + sin θ

∫ θ

0
cos βq(β)dβ − cos θ

∫ θ

0
sin βq(β)dβ

− P sin θustep(θ − α1) − H cos θustep(θ − α2),

V(θ) = k1 cos θ − k2 sin θ + cos θ

∫ θ

0
cos βq(β)dβ + sin θ

∫ θ

0
sin βq(β)dβ

− P cos θustep(θ − α1) + H sin θustep(θ − α2) + γ r2η sin θ + pθ ,

M(θ) = k3 −
∫ θ

0
N(β)r′dβ −

∫ θ

0
V(β)rdβ (9)

−
∫ θ

0

[
γ r3 η3

12
sin β + pθ

b
2

]
dβ

−P
∫ θ

0
δ(β − α1)|r(α1) sin α1 − r(β) sin β|dβ

−H
∫ θ

0
δ(β − α2)|r(α2) cos α2 − r(β) cos β|dβ,

where k1, k2 and k3 are arbitrary constants resulting from solving the differential equations and with

q(θ) = −(γ r2η)′ sin θ − 2γ r2η cos θ − p′
θ + pr. (10)

Note that this solution offers piecewise continuous expressions for the internal forces and the bending
moment.
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3.2 Boundary conditions

The general solution of the set of differential equations (9) includes three constants, i.e., k1, k2 and k3.
Therefore, to find the unique solution for the internal forces and the bending moment in the arch bridge, we
require additional constraints. The boundary conditions introduced below are constraints on the horizontal,
vertical and angular deflections of the fixation points of the arch bridge.

The so-called Bresse equations [13, Chapter 6] yield expressions for these deflections, based on the
following assumptions:

(i) symmetric cross-section
(ii) load applied in the symmetry plane (the deformed centreline remains in the symmetry plane)

(iii) linear elastic material

Note that condition (ii) is trivially satisfied as we consider a 2D model. Condition iii describes the
material behavior in between the hinges. As the arch bridges and external load conditions considered here
satisfy all conditions, Bresse’s equations express the deflections in every point of the arch bridge in terms
of the values for these deflections in one of the boundary points. In particular, Bresse’s equations yield the
deflections in the right fixed support, given their values in the left fixed support:

ϕ2 = ϕ1 + 1
E

∫ θ2

θ1

M
I

√
r2 +

(
∂r
∂θ

)2

dθ , (11)

u2 = u1 + (y2 − y1)ϕ1 + 1
E

∫ θ2

θ1

N
A

∂x
∂θ

dθ + 1
E

∫ θ2

θ1

(y2 − y)
M
I

√
r2 +

(
∂r
∂θ

)2

dθ , (12)

v2 = v1 − (x2 − x1)ϕ1 + 1
E

∫ θ2

θ1

N
A

∂y
∂θ

dθ − 1
E

∫ θ2

θ1

(x2 − x)
M
I

√
r2 +

(
∂r
∂θ

)2

dθ (13)

with ϕ the rotation of the elastic line, u the horizontal deflection, v the vertical deflection, A the area of the
cross-section, I = the rotational inertia of the cross-section, E the modulus of elasticity, x the horizontal
position coordinate, y the vertical position coordinate, and the subscripts 1 and 2 denoting the left and the
right support of the arch bridge, respectively (see Fig. 4).

The sign conventions for the horizontal and vertical deflections u and v are considered the same for
both axes x and y and the rotation ϕ is taken to be positive for clockwise rotations. Both axes are defined
as shown in Fig. 4. If the deflections in both supports, i.e., (u1, v1, ϕ1) and (u2, v2, ϕ2), are specified, these
equations can be used to derive unique values for k1, k2 and k3. The latter can be understood by noting
all three functions N(θ), V(θ) and M(θ), as derived above in Eq. 9, are linear functions of the unknown
constants k1, k2 and k3. Furthermore, all operators applied to N(θ) and M(θ) in Bresse’s equations are
linear as well. Hence, inserting the expressions derived for N(θ) and M(θ) into Bresse’s equations will
yield a linear set of equations in terms of the unknown constants k1, k2 and k3. Using matrix notation, the
equations are expressed as:

E = Ak (14)

with E = [E1 E2 E3]τ , A = [aij] and k = [k1 k2 k3]τ . If matrix A is non-singular, Eq. 14 can be solved to
find the unique set of constants k1, k2 and k3. Therefore, this method allows to find the unique solution of
the equilibrium equations for a linear elastic arch.
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(a) (b) (c) (d)

Fig. 6 Evolution of the distribution of stress as the pressure load is increased from (a) to (d)

3.3 Elastic–plastic material properties

To obtain a satisfying correspondence between theory and experiment, we will have to extend the model
presented here by considering the material properties. Lourenço [14, Chapter 2] made a taxonomy of
models for masonry into three types, the so-called micro-, meso- and macro-models. In this paper, we use
a simplified homogeneous material, which can be classified as a macro-model. In particular, since arch
bridges are mostly concrete, masonry or stone constructions, the presence of cracks will have to be taken
into account. The following assumptions are made with respect to the behavior of the material:

(i) on reaching the tensile strength σt, a crack occurs;
(ii) on reaching the compressive strength σd, the material behaves perfectly plastic;

(iii) for σd < σ < σt, the material behaves linearly elastically.

The tensile strength of masonry is accepted to have a minor influence and to be negligible compared
with the compressive strength [15]. As a result, we assume σt = 0. In the examples shown below we choose
a typical value for the compressive strength, i.e., σd = −8 MPa.

Only five stress distributions can occur under these hypotheses: linear-elastic, elasto–fragile,
elasto–plastic, elasto–plasto–fragile and plasto–fragile.

Figure 6 shows the evolution of the stress distribution when a cross-section of the arch bridge is subjected
to an increasing pressure load, with xf the height of the crack and xp the height of the plastic section.

In this last part of Sect. 3.3, we introduce normalized versions of N(θ) and M(θ), i.e., the relative normal
force nd(θ) and the relative moment md(θ).

nd(θ) = N(θ)

−σdb(θ)
, md(θ) = M(θ)

−σdb2(θ)
. (15)

Each of the possible stress distributions will mark out a zone in the (nd, md)-plane, containing combinations
of the relative normal force (= nd) and the relative moment (= md) in which that specific distribution is
possible, as illustrated in Fig. 7.

The border of the elasto–plasto–fragile area corresponds to a plasto–fragile distribution, being consis-
tant with the stress distribution of Fig. 6(d). It reflects those combinations that correspond to the stress
distribution of a plastic hinge.

The equation describing this envelope in the compression region is obtained by eliminating xf and xp

from the expressions for nd and md that apply to the situation shown in Fig. 6(d):

|md| = −n2
d − nd

2
. (16)
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Fig. 7 Envelope of the
distribution of stress

3.4 Construction of the model

We will study the failure of masonry arches as a function of a parameter ‘x’. This parameter can be any
external load. The arch is buttressed at its two ends. Hence, the structure is statically indeterminate to the
third degree and will collapse as soon as four hinges have appeared.

Since the results depend linearly upon the studied parameters, we can separate the terms depending
upon this parameter x from those that do not, and then rewrite Eq. (14):

C + xD = A(f + xg). (17)

To derive f and g, the matrix equations are inverted:

C = Af , D = Ag. (18)

Inserting f and g in Eq. 9 the internal forces can be expressed in terms of this parameter x making use of
the intermediate variables Fi(θ) and Gi(θ), (i = 1, 2, 3):

N(θ) = F1(θ) + G1(θ)x, V(θ) = F2(θ) + G2(θ)x, M(θ) = F3(θ) + G3(θ)x. (19)

To keep the results generalized, we do not further elaborate these expressions at this point. Depending on
the nature of the parameter x, the expanded expressions will turn into different forms.

As detecting the occurrence of hinges is performed in the (nd, md)-plane, the internal forces are used to
derive expressions for the relative normal force nd(θ) and relative moment md(θ).

For notational convenience we first introduce the following terms:

F1d(θ) = F1(θ)

(−σd)d
, G1d(θ) = G1(θ)

(−σd)d
,

(20)

F3d(θ) = F3(θ)

(−σd)d2 , G3d(θ) = G3(θ)

(−σd)d2 .

The relative normal force and the relative moment can then be expressed in terms of the parameter x as

nd(θ) = F1d(θ) + G1d(θ)x, md(θ) = F3d(θ) + G3d(θ)x. (21)

Initially, the arch does not contain any hinges. The first hinge appears for the smallest value of x giving rise
to a relative normal force and a relative moment that satisfy Eq. 16. We denote this x-value by xmax1. The
angle θ = θmax1 corresponding with this value xmax1 gives the location of this first hinge.

In the presence of one plastic hinge the arch turns into a structure that is statically indeterminate to
the second degree. We have kept the standard assumption of constant moments in the hinges from classic
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plasticity theory, [16, Chapter 2–3]. In [12] we show that the normal forces in the hinges stay approximately
constant as well. An arbitrary rotation can occur in this hinge with a constant bending moment, while the
material can be considered elastic in other cross-sections. The equations of equilibrium remain the same
for an increasing load, but the boundary conditions are adjusted to represent the changed conditions. With
the resulting new equations, the evolution of the relative normal force and the relative moment can be
determined under continuously increasing value of x. The equilibrium equations together with the hinge
equation in θmax1 and the adapted boundary conditions, yield a new matrix equation in terms of �x. This
new variable �x denotes the increment of x required to generate the next hinge.

The matrix equation can now be rewritten in terms of ‘�x’

Cs + xDs = As(fs + �xgs) (22)

with  denoting the number of hinges present in the arch. Using a similar technique as explained previous,
the vectors fs and gs can be used to derive expressions for the relative normal force nd(θ) and the relative
moment md(θ). The smallest value of �x giving rise to a second pair of relative normal force and relative
moment satisfying Eq. 16 is the value �xmax1, i.e., the increment of x corresponding with the second hinge.
The value of x that gives rise to two hinges in the arch is then given by xmax2 = xmax1 + �xmax1 and the
second hinge is localized by the angle θ = θmax2. The same procedure, i.e., the principle of superposition of
effects, is followed for determining the third and fourth hinge. The flow-chart of this algorithm is illustrated
in Fig. 8.

The methodology elaborated in this paper (and depicted in Fig. 8) improves the classic approaches along
a number of lines. The worked-out examples in the next section serve to illustrate the latter statement.

4 Example 1: Vertical concentrated load

To illustrate the approach described above we determine the hinge location, collapse load, internal forces
and deflections for an arch bridge, with circular-shaped centreline and characteristics as given in Table 1.

The boundary conditions are assumed to be

ϕ1 = ϕ2 = u1 = u2 = v1 = v2 = 0. (23)

A distributed load, i.e., the weight of the infill, and a concentrated load P at α = 0.75 = 42.97◦, are imposed
on the bridge. As indicated in the introduction, the material is assumed to be homogeneous.

The flow-chart of the numerical algorithm used to calculate the results presented in this section is shown
in Fig. 8. Note that the formulae used in the calculation of A, C and D are different depending on the
number of hinges present in the arch.

Table 1 Characteristics of an exemplary arch bridge

r[m] b[m] γ
[

N
m3

]
γ2

[
N
m3

]
h[m] E

[
106N
m2

]
θ1 θ2 σd[MPa]

1.65 0.5 21,000 21,600 2 5,000 −π/2 π/2 −8
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Fig. 8 Flowchart of the numerical algorithm

First, the collapse load and the corresponding hinges are determined. Next, the internal forces and
displacements just before collapse are determined. The hinges give rise to:

1st hinge: Pmax1 = 40.966 kN

θmax1 = 0.7461 = 42.75◦

2nd hinge: Pmax2 = 69.75 kN

θmax2 = −1.5708 = −90◦

3rd hinge: Pmax3 = 94.628 kN

θmax3 = −0.3971 = −22.75◦

4th hinge: Pmax4 = 137.730 kN

θmax4 = 1.3483 = 77.25◦

The collapse load is the sum of all the load terms and is given by Pmax = 1.377×105 N. As can be seen from
these results, the first hinge occurs almost exactly under the point where the load is imposed. The second
hinge occurs in one of the fixed supports. A third hinge occurs close to (but not exactly in) the other fixation
point (see Fig. 9). The formulae to calculate these displacements under a vertical concentrated load are
derived in ref. [12]. The location of these hinges as determined with the procedure described above is in
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Fig. 9 Displacement centreline under a vertical con-
centrated load

x105

P[
N

]

1

2

3

4

5

6

-1 -0.6 -0.2 0.2 0.6 1

α[rad]

Fig. 10 Collapse load in function of the position of the
vertical point load

good agreement with results on failures of arch bridges reported by other authors [2]. Nevertheless, the
results reported in this paper indicate that the a priori assumption regarding the occurrence of two hinges
in the two support points which is frequently made is only approximately true.

The most important advantage of the analytical model described in this article is easy verification of the
sensitivity of the arch behavior to the various parameters used in the model. For instance, the determina-
tion of the weakest point of the arch bridge, i.e., the location α corresponding with the smallest collapse
load, is of great practical interest. In accordance with the findings of other authors, [17], the calculation
procedure described above indicates that α = 0 is not the weakest point. In the example this weakest
point falls at α = ±0.24 = 13.75◦ as shown in Fig 10. The maximum load possibly imposed on this point
is 0.564 × 105 N. This is the vertical collapse load of the arch. The results obtained can also be compared
with results obtained by the rigid–plastic approach, using the so-called Ring software [18]. The rigid–plastic
model is based on the theory of virtual work, giving rise to upper-bound values for the collapse load. Taking
the position of the point load to be the weakest position of the arch, i.e., α = ±0.24 = 13.75◦, we obtain the
results presented in Fig. 11. Figure 11 illustrates the numerical values of our collapse loads being smaller
than those obtained by the rigid–plastic model, yielding safer calculations. Comparing the hinge locations
with one another shows the collapse mechanism being the same for both our modus operandi and the
rigid-block approach. The collapse load, however, differs for smaller span-height proportions, as shown in
Fig. 11. As the effect of the elasticity of the masonry becomes more pronounced for larger cross-sections,
the upper bound derived from our model is significantly lower than the one resulting from the rigid-block
theory. Nevertheless, a realistic range for the span-height proportion is [11, 21].

5 Example 2: Horizontal concentrated load

We use the same material properties and the same arch bridge as in example 1. However, in this case we
impose a horizontal concentrated load at α = −0.75. First, the collapse load and the corresponding hinges
are determined. Next, the internal forces and displacements just before collapse are determined.
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Fig. 11 Validation of the elasto–plastic model against the
rigid–plastic model

Fig. 12 Displacement centreline under a horizontal con-
centrated load

1st hinge: Hmax1 = 15.724 kN

θmax1 = −0.7505 (−43◦),
2nd hinge: Hmax2 = 27.218 kN

θmax2 = −1.5490 (−88.7512◦),
3rd hinge: Hmax3 = 29.1869 kN

θmax3 = 1.5708 (90◦),
4th hinge: Hmax4 = 33.1849 kN

θmax4 = 0.3447 (19.7499◦).
The collapse load is the sum of all the load terms and is given by Hmax = 3.3185 × 104 N. As can be seen
from these results, the first hinge occurs almost exactly below the point where the load is imposed. The
second hinge occurs close to the fixed support on the side of the load. A third hinge occurs in the other
fixation point (see Fig. 12).

Since the internal forces are known at all times, the evolution of the stress distribution in the arch can
be traced for increasing load H until the structure collapses. Based on the ratio of nd and md, the type of
stress distribution can be determined.

The normal stresses (see Fig. 13), are determined for five different load conditions:

(i) arch loaded by dead load = the weight of the arch and of the infill
(ii) arch loaded by dead load + Hmax1 = 1.5724 × 104 N,

(iii) arch loaded by dead load + Hmax2 = 2.7218 × 104 N,
(iv) arch loaded by dead load + Hmax3 = 2.9187 × 104 N,
(v) arch loaded by dead load + Hmax4 = 3.3185 × 104 N.

These figures also clearly depict the consecutive hinges coming about.

6 Model limitations

Obviously simplifications are made in the analytical model described in this paper. They can, however,
be justified by a desire to minimize complexity and by making the techniques accessible for wider use.
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Fig. 13 Evolution of the normal-stress distribution as a function of increasing horizontal load H

Modeling a three-dimensional structure as a two-dimensional construction imposes certain limitations as
well. The effects of spandrel walls cannot be included into the model, and behavior transverse to the span
cannot be observed.

Due to the method of crack modeling in the arch, cracks are forced to propagate perpendicularly to the
arch ring. An improved model could include more crack planes. However, since experiments show that
failure of the arch is due to cracks in the mean direction, the other cracks are of minor importance and do
not lead to collapse.

The model presented in this paper proves that the elasticity of the arch ring has a big influence on the
collapse load. The influence of other material properties, such as Poisson’s modulus for the arch barrel and
the infill and the elasticity modulus, should be examined. If their requirement can be justified, these prop-
erties should be added to the model. Also incorporation of a shear mechanism and a combined shear-hinge
mechanism would extend the possibilities of the model.

7 Conclusion and future work

An analytical approach to the collapse analysis of single-span arch bridges has been presented. The model
enhances the basic, modern formulation of the theory, presented by Heyman [15]. The main hypotheses
in such models are (i) sliding between voussoirs not being allowed to occur, (ii) masonry not being able to
resist tension stresses and (iii) the compressive strength of the voussoirs being infinite. The model presented
here incorporates material properties such as compressive strength, tensile strength and elasticity modulus
of the arch barrel. Another major advantage of our approach is its analytical character, making it suitable
for parameter studies.

From a comparison with the rigid-block analysis it is clear that our approach predicts significantly smaller
collapse loads than the upper bounds generated by the rigid-block analysis. This is related to the thickness
of the arch. As the thickness of the arch increases, the elastic behavior of the material becomes more
significant. Hence, the present approach, by taking into account the elastic properties of the material of
the arch, will produce more realistic results than a rigid-block analysis possibly could.
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This procedure leads to a fast and reasonably accurate assessment of an arch under a wide range of load
conditions. Both the locations of the hinges and the collapse load of an arch bridge can be determined.
The analytic approach makes it possible to perform parameter studies, e.g., determining the weakest point
of an arch bridge. Also, the influence of the other parameters used in the model, such as height of the
superstructure, material properties of the arch and/or of the infill, thickness of the ring, etc., can easily be
studied by our analytical elastic–plastic model.

To obtain an even better match between the theoretical results and the behavior of the real bridge,
more detailed modeling of the bridge is required, e.g., taking into account sliding phenomena as well as the
presence of infill and spandrel walls. Also, being a 2-dimensional model, it cannot fully take into account
the non-zero width of the bridge. The authors propose building a 3-dimensional finite-element model.
Comparing the results from both models, the limits of our model can be investigated more thoroughly.

References

1. Woolfenden PA (1993) Modeling the masonry arch: Improving modern arch bridge assessment using nonlinear finite
element software package (MAFEA). Bridge Managment, vol. 2. Thomas Telford, London, pp 254–263

2. Boothby T (1995) Collapse modes of masonry arch bridges. J Brit. Masonry Soc 9(2):62–69
3. Gilbert M, Melbourne C (1994) Rigid-block analysis to masonry arches. Struct Engng 72:356–361
4. Hughes TG, Blackler MJ (1995) A review of the UK masonry assessment methods. Proc Inst Civil Eng 110:373–382
5. Choo BS, Coutie MG, Gong NG (1991) Finite-element analysis of masonry arch bridges using tapered elements. Proc

Inst Civil Eng 91:755–770
6. Mollins C, Roca P (1998) Capacity of masonry arches and spatial frames. J Struct Engng 124:653–663
7. Boothby TE, Domalik DE, Dalal VA (1998) Service load response of masonry arch bridges. J Struct Engng 124:17–23
8. Lourenço PB, Rots JG (2000) Failure criterion for masonry suitable for numerical implementation. The Masonry Soc J

18:11–18
9. Ng KH, Fairfield CA, Sibbad A (1999) Finite-element analysis of masonry arch bridges. Proc Inst Civil Eng: Structs Build

134:119–127
10. Fanning PJ, Boothby TE, Roberts BJ (2001) Longitudinal and transverse effects in masonry arch assessment. Construction

Build Mater 15:51–60
11. Hendry AW, Davies SR, Royles R (1985) Test on a Stone Masonry Arch at Bridgemill-Girvan. Transport and Road

REsearch Lab, Contractors Report 7 United Kingdom
12. Audenaert A, Peremans H, De Wilde WP (2004) Static determination of the internal forces and displacements in arch

bridges. The Masonry Soc J 22(1):97–109
13. Timoshenko SP (1983) History of strength of materials. Dover Publications
14. Lourenço PB (1996) Computational strategies for masonry structures. Delft University Press
15. Heyman J (1966) The stone skeleton, Int J Solids Struct 2:249–279
16. Kachanov LM (2004) Fundamentals of the theory of placticity. Dover Publications
17. Brencich A, De Francesco U, Gambarotta L (2001) Elastic no tensil resistant-plastic analysis of masonry arch bridges as

an extension of Castigliano’s method. The Ninth Canadian masonry symposium at New Brunswich, on 4–6 June 2001
18. RING (2003) The University of Sheffield, www.shef.ac.uk/ring, 2003


	Abstract
	Abstract
	Introduction
	Collapse modes of arch bridges
	Analytical model
	Equilibrium equations
	Boundary conditions
	Elastic--plastic material properties
	Construction of the model
	Example 1: Vertical concentrated load
	Example 2: Horizontal concentrated load
	Model limitations
	Conclusion and future work


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /Description <<
    /DEU <>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [2834.646 2834.646]
>> setpagedevice


